
An Overview of Model Checking

Ma Li
Center for Logic, Language and Cognition

Peking University

November 23, 2009

Abstract

This paper is devoted to investigate model checking. The main
motivation is rather to check how much I know about model checking
than to give a presentation itself. The paper is composed of four
parts. In the first part, model checking is introduced, including the
background, its advantages over other verifying techniques as well as
its main disadvantage. In the second part, we will investigate how to
do model checking, that is to say, the process of model checking. In
the third part, temporal logic as a specifying logic for model checking
will be discussed. In the last part, two main breakthroughs on the
state space explosion will be concerned. They are symbolic model
checking and partial order reduction.

1 Introduction

Computer takes a greater and greater role in our life, involving economics,
traffic, spaceflight and many other important aspects. Usually, we design
some complex system, then let it implemented by the computer. A problem
has been haunting over us is that how can we ensure the correctness of the
design. Sometimes, even a same failure can lead to a economical disaster or
even life losses. To solve this problem, there are several approaches, such as
simulation, testing and model checking. The former two are both informal

1

while the latter is formal. While simulation and testing explore some of the
possible behaviors and scenarios of the system, leaving open the question of
whether the unexplored trajectories may contain the fatal bug, formal veri-
fication conducts an exhaustive exploration of all possible behaviors. Thus,
when a design is pronounced by a formal verification method, it implies that
all behaviors have been explored, and the questions of adequate coverage or
a missed behavior become irrelevant. That is to say, by model checking, a
desired behavior property of a reactive system is verified over a given system(
the model) through exhaustive enumeration of all the states reachable by the
system and the behaviors that traverse through them.

Model checking enjoys the following advantages for verification of circuits
and protocols. First and the most important one is that it can be imple-
mented completely automatically. Secondly, the model checking algorithm
will either terminate with the answer true, indicating that the model satis-
fies the specification or give a counterexample execution that shows why the
formula is not satisfied. The counterexamples are particularly important in
finding subtle errors in complex transition systems. The third advantage of
model checking is that it is fast. Partial specification can be checked, so it is
unnecessary to specify completely the system before useful information can
be obtained regarding its correctness. When a specification is not satisfied,
other formulas-not part of the original specification- can be checked in order
to locate the source of the error. Finally, the logic used for specification
has strong expressive power. It can express many of the properties that are
needed for reasoning about concurrent systems([1]).

Apart from the above advantages, model checking also has its own dis-
advantages. The main disadvantage of it is the state space explosion that
can occur if the system being verified has many components that can make
transitions in parallel. In this case, the number of global system states may
grow exponentially with the number of processes.

2 How to Do Model Checking

The first step is to convert a design into a formalism accepted by a model
checking tool. In many cases, this is simply a compilation task. Sometimes,
for time and memory’s sake, the modeling of design may require the use of
abstraction to eliminate irrelevant or unimportant details.

2

The second step is to specify the properties that the designs must satisfy.
The specification is usually given in some logical formulas. Both hardware
and software systems can use temporal logic as their specification logic, which
can assert how the behavior of the system evolves over time.

The last step is to verify whether the model obtained in the first step
satisfied the specification got in the second step. Ideally the verification is
fully automatic. However, in practice it often involves human assistance.
One such manual activity is the analysis of the verification results. In case of
a negative result, the user is often provided with an error trace. This tracking
down where the error occurred. In this case, analyzing the error trace may
require a modification to the system and reapplication of the model checking
algorithm.

Because the verification relates both modeling and specification, the error
trace may result from both incorrect modeling and incorrect specification.
The error trace can help us to fix these two problems. Another possibility
is that the verification algorithm may not terminate eventually, due to the
size of the model, which is too large to fit into the computer memory. In this
situation, we should remodel the design.

3 Temporal Logic

Temporal logic is a formalism for describing sequences of transition between
states in a reactive system. In the temporal logics that we will consider, time
is not mentioned explicitly; instead, a formula might specify that eventually
some designated state is reached, or that an error state is never entered.
Properties like eventually or never are specified using special temporal op-
erators. These operators can also be combined with boolean connectives or
nested arbitrarily. Temporal logics differ in the operators that they provide
and the semantics of those operators. We will focus on a powerful logic called
CTL∗[1][2].

3.1 The Computation Tree Logic CTL∗

Conceptually, CTL∗ formulas describe properties of computation trees. The
tree is formed by designating a state in a Kripke structure as the initial state
and then unwinding the structure into an infinite tree with the designated

3

state at the root, as illustrated in Figure3.1. The computation tree shows all
of the possible executions starting from the initial state.

In CTL∗ formulas are composed of path quantifiers and temporal oper-
ators. The path quantifiers are used to describe the branching structure in
the computation tree. There are two such quantifiers A(”for all computation
paths”) and E (”for some computation path”). These quantifiers are used
in a particular state to specify that all of the paths or some of the paths
starting at that state have some property. The temporal operators describe
properties of a path through the tree. There are five basic operators:

• X(”next time”) requires that a property holds in the second state of
the path.

• The F(”eventually” or ”in the future”) operator is used to assert that
a property will hold at some state on the path.

• G(”always” or ”globally”) specifies that a property holds at every state
on the path.

• The U (”until”) operator is a bit more complicated since it is used to
combine two properties. It holds if there is a state on the path where
the second property holds, and at every preceding state on the path,
the first property holds.

• R(”release”) is the logical dual of the U operator. It requires that
the second property holds along the path up to and including the first
state where the first property hold. However, the first property is not
required to hold eventually.

The remainder of this section contains a precise description of the syntax
and semantics of CTL∗. There are two types of formulas in CTL∗: state
formulas(which are true in a specific state) and path formulas (which are
true along a specific path). Let AP be the set of atomic proposition names.
The syntax of state formulas is given by the following rules:

• If p∈ AP, then p is a state formula.

• I f and g are state formulas, then ¬f, f ∨g and f ∧g are state formulas.

4

• f is a path formula, the Ef and Af are state formulas.

Two additional rules are needed to specify the syntax of path formulas:

• If f is a state formula, then f is also a path formula.

• If f and g are path formulas, then ¬f, f ∨g, f ∧g, Xf, Ff, Gf, f Ug, and
f Rg are path formulas.

CTL∗ is the set of state formulas generated by the above rules.
We define the semantics of CTL∗ with respect to a Kripke structure.

Recall that a Kripke structureM is a triple〈S,R, L〉, where S is the set of
states; R ⊆ S × S is the transition relation, which must be total (i.e., for all
states s ∈ S there exists a state s

′ ∈ S such that (s, s
′
) ∈ R); and L : S →

2AP is a function that labels each state with a set of atomic propositions true
in that state. A path in M is an infinite sequence of states, π = s0, s1, . . .
such that for every i ≥ 0, (si, si+1) ∈ R. (Alternatively, we can think of a
path as an infinite branch in the computation tree that corresponds to the
Kripke structure.)

We use πi to denote the suffixof π starting atsi. If f is a state formula,
the notation M, s |= f means that f holds at state s in the Kripke structure
M. Similarly, is f is a path formula, M,π |= f means that f holds along path
π in the Kripke structure M. When the Kripke structure M is clear from
the context, we will usually omit it. The relation |=is defined inductively as
follows (assuming that f1 and f2 are two state formulas and g1 and g2 are
path formulas):
1. M, s |= p ⇔ p ∈ L(s).
2. M, s |= ¬f1 ⇔ M, s un-satisfies f1
3. M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2
4. M, s |= f1 ∧ f2 ⇔ M, s |= f1 and M, s |= f2
5. M, s |= Eg1 ⇔ there is a path π from s such that M,π |= g1.
6. M, s |= Ag1 ⇔ for every path π starting from s, M,π |= g1.
7. M,π |= f1 ⇔ s is the first state of π and M, s |= f1
8. M, s |= ¬g1 ⇔M, sg1
9. M,π |= g1 ∨ g2 ⇔ m,π |= g1orM, π |= g2
10. M,π |= g1 ∧ g2 ⇔ m, s |= g1andM, s |= g2
11. M,π |= Xg1 ⇔M,π1 |= g1.
12. M,π |= Fg1 ⇔ there exists a k ≥ 0 such that M,πk |= g1.

5

13. M,π |= Gg1 ⇔ for all i ≥0, M,πi |= g1.
14. M,π |= g1Ug2 ⇔ there exists a k ≥0 such that M,πk |= g2 and for all
0≤ j < k, M,πj |= g1.
15.M,π |= g1Rg2 ⇔ for all j ≥ 0, if for every i < j, M,πi un-satisfies g1
then M,πj |= g2.

It is easy to see that the operators ∨, ¬, X, U, and E are sufficient to
express any other CTL∗ formulas.

• f ∧ g ≡ ¬(¬f ∨ ¬g)

• fRg ≡ ¬(¬fU¬g)

• Ff ≡ True U f

• Gf ≡ ¬F ¬ f

• A(f) ≡ ¬E ¬ (f)

3.2 CTL and LTL

In this section we consider two useful sublogics of CTL∗: one is a branching-
time logic and one is a linear-time logic. The distinction between them is in
how they handle branching in the underlying computation tree.In branching-
time temporal logic the temporal operators quantify over the paths that are
possible from a given state. In linear-time temporal logic, operators are
provided for described for describing events along a single computation path.

Computation Tree Logic(CTL) is a restricted subset of CTL∗ in which
each of the temporal operators E, F, G, U and R must be immediately
preceded by a path quantifier. More precisely, CTL is the subset of CTL∗

that is obtained by restricting the syntax of path formulas using the following
rule.

• If f and g are state formulas, then Xf, Ff, Gf, f Ug and f Rg are path
formulas.

Linear Temporal Logic(LTL), on the other hand, will consist of formulas
that have the form Af where f is a path formula in which the only state
subformulas permitted are atomic propositions. More precisely, an LTL path
formula is either

6

• If p ∈ AP, then p is a path formula.

• If f and g are path formulas, then ¬f, f ∨g, f ∧g, Xf, Ff, Gf, f Ug, and
f Rg are path formulas.

It can be shown that the three logics that we have discussed have different
expressive powers. For example, there is no CTL formula that is equivalent
to the LTL formula A(FGp). This formula express the property that along
every path, there is some state from which p will hold forever. Likewise, there
is no LTL formula that is equivalent to the CTL formula AG(EFp). The
disjunction of these two formula A(FGp)∨ AG(EFp) is a CTL∗ formula
that is not expressible in either CTL or LTL.

Most of the specifications in the following part of this article will be
written in the logic CTL. There are ten basic CTL operators:

• AX and EX,

• AF and EF

• AG and EG

• AU and EU

• AR and ER

Each of the ten operators can be expressed in terms of three operators
EX, EG and EU:

• AXf = ¬ EX(¬f)

• EFf =E[TrueUf]

• AGf = ¬ EF(¬f)

• A[f Ug]= ¬ E[¬gU(¬f ∧¬g)]∧¬EG¬g

• A[f Rg]= ¬ E[¬f U¬g]

7

4 Some Breakthrough on State Space Explo-

sion (Mainly Focus on the Symbolic Model

Checking)

As mentioned in the first part, the main disadvantage of model checking is
the state space explosion problem. Because of this problem, many researchers
in formal verification predicted that model checking would never be practi-
cal for large systems. However, in the late 1980s, the size of the transition
systems that could be verified by model-checking techniques increased dra-
matically. Much of the increase has been due to some breakthrough on the
model checking, such as symbolic model checking, partial order reduction,
bounded model checking and localization reduction. We will focus on the
symbolic model checking in this article.

4.1 Binary Decision Diagrams

Before the introduction of symbolic model checking, we first have a look at
the OBDDs, which is used in the symbolic model checking.Ordered binary
decision diagrams (OBDDs) are a canonical form representation for boolean
formulas. They are often substantially more compact than traditional normal
forms such as conjunction normal form and disjunction normal form, and they
can be manipulated very efficiently. Hence, they have become widely used
for a variety of applications in computer aided design, including symbolic
simulation, verification of combinational logic and, more recently, verification
of finite-state concurrent systems.

A binary decision tree is a rooted, directed tree that consists of two types
of vertices, terminal vertices and nonterminal vertices. Each nonterminal
vertex υ is labeled by a variable var(v) and has two successors: low(v) cor-
responding to the case where the variable is assigned 0, and high(v) corre-
sponding the case where υ is assigned 1. If the variable υ is assigned 0, then
the next vertex on the path from the root to the terminal vertex will be
low(v). If υ is assigned 1 then the next vertex on the path will be high(v).
The value that labels the terminal vertex will be the value of the function
for this assignment.

Binary decision trees do not provide a very concise representation for
boolean functions. In fact, they are essentially the same size as truth tables.

8

Fortunately, there is usually a lot of redundancy in such trees, such as iso-
morphic subtrees. Thus, we can obtain a more concise representation for the
boolean function by merging isomorphic subtrees. This results in a directed
acyclic graph (DAG) called a binary decision diagram. More precisely, a bi-
nary decision diagram is a rooted, directed acyclic graph with two types of
vertices, terminal vertices and nonterminal vertices. As in the case of binary
decision trees, each nonterminal vertex υ is labeled by a variable var(v) and
has two successors, low(v) and high(v). Each terminal vertex is labeled by
either 0 or 1. Every binary decision diagram B with root υ determines a
boolean function fv(x1, . . . , xn) in the following manner:
1. If υ is a terminal vertex
(a) If value(v) =1 then fv(x1, . . . , xn)=1.
(b) If value(v) =0 then fv(x1, . . . , xn)=0.
2. υ is a nonterminal vertex with var(v)=xi then fv is the function
fv(x1, . . . , xn)=(¬ xi∧ flow(v)(x1, . . . , xn)) ∨ (xi∧ fhigh(v)(x1, . . . , xn))

In practical applications it is desirable to have a canonical representation
for boolean functions. Such a representation must have the property that two
boolean functions are logically equivalent if and only if they have isomorphic
representations. This property simplifies tasks like checking equivalence of
two formulas and deciding if a given formula is satisfiable or not. Two binary
decision diagrams are isomorphic if there exists a one-to-one and onto func-
tion h that maps terminals of one to terminals of the other and nonterminals
of one to nonterminals of the other, such that for every terminal vertex υ,
var(v)=var(h(v)), h(low(v))=low(h(v)), and h(high(v))=high(h(v)).

Bryant [2] showed how to obtain a canonical representation for boolean
functions by placing two restrictions on binary decision diagrams. Firs, the
variables should appear in the same order along each from the root to a ter-
minal. Second, there should be no isomorphic subtrees or redundant vertices
in the diagram. The first requirement is achieved by imposing a total order-
ing < on the variables that label the vertices in the binary decision diagram
and requiring that for any vertex u in the diagram, if u has a nonterminal
successorυ, then var(u)< var(v). The second requirement is achieved by the
diagram:

• Remove duplicate terminals Eliminate all but one terminal vertex with
a given label and redirect all arcs to the eliminated vertices to the
remaining one.

9

• Remove duplicate nonterminals If two nonterminals var(u) and var(v)
have var(u)=var(v) , low(u)< low(v) and high(u)< high(v), then elim-
inate u or v and redirect all incoming arcs to the other vertex.

• Remove redundant tests If nonterminal v has low(v)=high(v), then
eliminate v and redirect all incoming arcs to low(v).

Starting with a binary decision diagram satisfying the ordering property,
the canonical form is obtained by applying the transformation rules until
the size of the diagram can no longer be reduced. If OBDDs are used as a
canonical form for boolean functions, then checking equivalence is reduced to
checking isomorphism between binary decision diagrams. Similarly, satisfia-
bility can be determined by checking equivalence to the trivial OBDD that
consists of only one terminal labeled by 0.

OBDDs are extremely useful for obtaining concise representations of re-
lations over finite domains. We will see later how to use such representations
to describe Kripke structures and to analyze them. If Q is an n-ary relation
over {0, 1}, then Q can be represented by the OBDD for its characteristic
function

fQ(x1, . . . , xn) =1 iff Q(x1, . . . , xn) .
Otherwise, let Q be an n-ary relation over the finite domain D. Without

loss of generality we assume that D has 2m elements for some m > 1. In order
to represent Q as an OBDD, we encode elements of D, using a bijection φ:
{0, 1}m → D that maps each boolean vector of lenth m to an element of
D. Using the encoding φ, we construct a boolean relation Q of arity m × n
according to the following rule:

Q̂(x̄1, . . . , x̄n)= Q(φ(x̄1), . . . , φ(x̄n))
where x̄i is a vector of m boolean variables that encodes the variable xi,
which takes values in D. Qcan now be represented as the OBDD determined
by the characteristic function fQ̂ of Q̂. This technique can be easily extended
to relations over different domains D1, . . ., Dn. Moreover, because sets can
be viewed as unary relations, the same technique can be used to represent
sets as OBDDs.

Consider now the Krikpe structure M=(S, R, L). To represent this struc-
ture, we must describe the set S, the relation R, and the mapping L. For
the set S, we first need to encode the states; for simplicity, we assume that
there are exactly 2m states. As above, we let φ: {0, 1}m→ S be a function

10

mapping boolean vectors to states. Since each assignment is the encoding of
a state in S, the characteristic function representing S is the OBDD for 1.
For the transition relation R, we use the same encoding for the states. We
need two sets of boolean variables, one to represent the starting state and
another to represent the final state of a transition. If the transition relation
R is encoded by the boolean relation R̂(x̄, x̄

′
) , then R is represented by the

characteristic function fR̂. Finally, we consider the mapping L. Although L
is defined as a mapping from atomic propositions, it will be more convenient
to consider it as a mapping from states to subsets of propositions to subsets
of states. The atomic proposition p is mapped to the set of states that satisfy
it: {s|p ∈ L(s)}. Call this set of states Lp; it can be represented using the
encoding φ as above. We represent each atomic proposition separately in
this way.

4.2 Symbolic Model Checking

Symbolic model checking is based on the manipulation of boolean formulas.
Because the OBDDs represent sets of states and transitions, we need to
operate on entire sets rather than on individual states and transitions. For
this purpose, we use fixpoint characterization of the temporal logic operators.
A set S

′ ⊆ S is a fixpoint of a function τ : ℘(S)→ ℘(S) if τ(S
′
) =S

′
.

4.2.1 Fixpoint Representations

Let M=(S, R, L) be an arbitrary finite Kripke structure. The set ℘(S) of all
subsets of S forms a lattice under the set inclusion ordering. In this section,
we will use ℘(S) to denote the lattice. Each element S

′
of the lattice can

also be thought of as a predicate on S, where the predicate is viewed as being
true for exactly the states in S

′
. The least element in the lattice is the empty

set, which we also refer to as False, and the greatest element in the lattice is
the set S, which we sometimes write as True. A function that maps ℘(S) to
℘(S) will be called a predicate transformer. Let τ : ℘(S)→ ℘(S) be such a
function; then

• 1. τ is monotonic provided that P ⊆ Q implies τ(P) ⊆ τ(Q);

• τ is ∪ − continuous provided that P1 ⊆ P2 ⊆ . . . implies τ(∪iPi) =
∪iτ(Pi);

11

• τ is ∩ − continuous provided that P1 ⊇ P2 ⊇ . . . implies τ(∩iPi) =
∩iτ(Pi);

We write τ i(Z) to denote i applications of τ to Z. More formally, τ i(Z) is
defined recursively by τ 0(Z)=Z and τ i+1(Z)= τ(τ i(Z)). A monotonic predi-
cate transformer τ on ℘(S) always has a least fixpoint, µZ.τZ, and a greatest
fixpoint, νZ. τZ : µZ.τZ=∩ {Z|τ(Z) ⊆ Z} whenever τ is monotonic, and
µZ.τZ=∪iτ i(False) whenever τ is also ∪-continuous. Similarly, νZ.τZ=∪
{Z|τ(Z) ⊇ Z} whenever τ is monotonic, and νZ.τ(Z)= ∩iτ i(True) whenever
τ is also ∩-continuous.

Here are procedure for computing least fixpoints and greatest fixpoints:

function Lfp(Tau: PredicateTransformer): Predicate
Q: = False;
Q

′
:= Tau(Q);

while (Q 6= Q
′
) do

Q = Q
′
;

Q
′
= Tau(Q

′
);

end while;
return(Q);

end function

Figure 4.2.1
Procedure for computing least fixpoints.

function Gfp(Tau: PredicateTransformer): Predicate
Q: = True;
Q

′
:= Tau(Q);

while (Q 6= Q
′
) do

Q = Q
′
;

Q
′
= Tau(Q

′
);

end while;
return(Q);

end function

Figure 4.2.2
Procedure for computing least fixpoints.

12

If we identify each CTL formula f with the predicate {s|M, s |= f} in
℘(s) then each of the basic CTL operators may be characterized as a least
or greatest fixpoint of an appropriate predicate transformer.

• AF f = µZ. f1∨ AXZ

• EF f = µZ. f1∨ EXZ

• AG f = νZ. f1∧ AXZ

• EG f = νZ. f1∧ EXZ

• A[f1 Uf2]= µZ. f2∨(f1∧ AXZ)

• E[f1 Uf2]= µZ. f2∨(f1∧ EXZ)

• A[f1 Rf2]= νZ. f2∧(f1∨ AXZ)

• A[f1 Rf2]= νZ. f2∧(f1∨ EXZ)

Intuitively,least fixpoints correspond to eventualities while greatest fix-
points correspond to properties that should hold forever. Thus, AFf1 has a
least fixpoint characterization and EGf1 has a greatest fixpoint characteri-
zation.

4.2.2 The Symbolic Model Checking Algorithm for CTL

The symbolic model-checking algorithm is implemented by a procedure Check
that takes the CTL formula to be checked as its argument and returns an
OBDD that represents exactly those states of the system that satisfy the
formula. Of course, the output of Check depends on the OBDD representa-
tion of the transition relation of the system being checked; this parameter
is implicit in the discussion below. We define Check inductively over the
structure of CTL formulas. If f is an atomic proposition a, then Check(f)
is the OBDD representing the set of states satisfying a. If f = f1 ∧ f2 or
f = ¬f1, then Check(f) will be easily obtained according to Check(f1) and
Check(f2). Formulas of the form EX f, E[f Ug], and EGf are handled by
the procedures:

Check(EX f) = CheckEX(Check(f)),

13

Check(E [f Ug] = CheckEU(Check(f), Check(g)),

Check(EG f) = CheckEG(check(f)).
Notice that these intermediate procedures take OBDDs as their arguments,
whereas Check takes a CTL formula as its argument. The cases of CTL
fomulas of the form f ∨g or ¬f are handled using the standard algorithm for
computing boolean connectives with OBDDs. Because the other temporal
operators can all be rewritten using just the ones above, this definition of
Check covers all CTL formulas.

The procedure for CheckEX is straightforward in that the formula EX f
is true in a state if the state has a successor in which f is true.

CheckEX (f(v̄))=∃v̄′
[f(v̄

′
) ∧R(v̄, v̄

′
)].

where R(v̄, v̄
′
) is the OBDD representation of the transition relation. If we

have OBDs for f and R, then we can compute an OBDD for

∃v̄′
[f(v̄

′
) ∧R(v̄, v̄

′
)].

by using the operation of QBF (omitted here).
The procedure for CheckEU is based on the least fixpoint characterization

for the CTL operator EU:

E [f1 Uf2] = µZ. f2∨(f1∧ EXZ).
We use the function Lfp to compute a sequence of approximations

Q0, Q1, . . . , Qi, . . .

that converges to E [f Ug] in a finite number of steps. If we have OBDDs
for f, g, and the current approximation Qi , then we can compute an OBDD
for the next approximation Qi. Because OBDDs provide a canonical from
of boolean functions, it is easy to test for LFP terminates. The set of states
corresponding to E [f Ug]will be represented by the OBDD for Qi.

CheckEG is similar. In this cade the procedure is based on the greatest
fixpoint characterization for the CTL operator EG:

EG f = νZ. f1∧ EXZ

If we have an OBD for f , then the function GFP can be used to compute
an OBDD representation for the set of states that satisfy EG f.

14

5 Conclusion

As the title shows, I want to give an overview of model checking. However,
for the lacking of time, I haven’t done a satisfiable work. I will indulge myself
to the model checking in a coming long term.

References

[1] Edmund M. Clarke, Jr., Oma Grumberg, and Doron A. Peled. Model
Checking, MIT Press, 1999

[2] E.M. Clarke, E.A. Emerson, and A.P.Sistla. Automatic verifivation of
finite-state concurrent systems using branching time temporal logic speci-
fications. In Proceedings of the 10th Annual ACM Symposium on Principles
of Programming Language, January 1983.

15

